## **Vibration / Oscillation**



- 1) Fix a ...... blade on to a ......
- 2) The ...... position of the blade is '.......'
- 3) Now raise the ...... blade to position '..........' and release.
- 4) The blade will pass '.....' and come go to '......' position and then move back passing '......' to '......' position.
- 5) This will continue for some time.
- 6) ...... or ...... is a rhythmic movement of an object which moves to ...... sides from its ...... position.
- 7) 1 vibration is  $a \rightarrow \dots \rightarrow \dots \rightarrow a$  or  $b \rightarrow \dots \rightarrow b$  or  $0 \rightarrow \dots \rightarrow b$  or  $0 \rightarrow \dots \rightarrow b$

## Amplitude - (A)



- 1) Amplitude is the ...... between the ...... position and the most ...... position.
- 2) The ...... between '.....' to '.....' or the distance between '.....' to '......'
- 3) Amplitude is measured in ...... (......)
- 4) During a ...... or an ....., the amplitude will gradually ..... and finally the ..... or the ..... will .....

# Frequency - (f)

- 1) Frequency is the number of ...... or ...... which occur per ......
- 2) Frequency is measured by ...... (..........).

### Question 1

An object vibrated 7200 times in 4 minutes. Find its frequency.

Number of vibrations in ... minutes = ............

Number of vibrations in ... minute = ...........

Therefore number of vibrations in .... seconds = ......

Number of vibrations in ...... second = .....

Therefore the frequency = .....

# Teacher, S. Thomas' College, Mt. Lavinia

# Question 2

| An obje                                  | ect vibrated with a frequency of 4Hz. Find the nu                        | mber of vibrations that will occur in 5 minutes |
|------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------|
| Freque                                   | ncy                                                                      | =                                               |
| Therefore number of vibrations in second |                                                                          | =                                               |
| Number of vibrations in seconds          |                                                                          | =                                               |
| Therefore number of vibrations in minute |                                                                          | =                                               |
| Therefo                                  | ore number of vibrations in minutes                                      | =                                               |
| Waves                                    |                                                                          |                                                 |
| 1)                                       | Waves occur due to                                                       |                                                 |
| 2)                                       | Waves carry from one point to another                                    | er point.                                       |
| 3)                                       | In waves the do not from o                                               | one point to another point.                     |
| 4)                                       | Throw a to a water.                                                      |                                                 |
| 5)                                       | in forms of will form and move was landed on                             | away from the point where the                   |
| 6)                                       | During a wave, the particles will vil not move away from the place where | ·                                               |
| 7)                                       | Tie up a on a post.                                                      |                                                 |
| 8)                                       | Pull the end of the away from the straight.                              | post till the become                            |
| 9)                                       | Now move the end of the rope a                                           | nd                                              |
| 10)                                      | The wave will move from the                                              | . end of the towards the post.                  |
| 11)                                      | But the of the moved                                                     | and                                             |
| 12)                                      | The of the rope did not move post.                                       | from the end of the rope towards the            |

# Teacher, S. Thomas' College, Mt. Lavinia







### **Mechanical waves**

- 1) There are vibrating ..... in mechanical waves.
- 2) Since there are vibrating ......, the mechanical waves need ...... to travel.
- 3) Therefore mechanical waves cannot travel in a ......

# Channa Asela <u>www.OLscience.com</u>

# Teacher, S. Thomas' College, Mt. Lavinia

| 4)    | There are two types of mechanical waves according to the of the wibrating of the                |  |
|-------|-------------------------------------------------------------------------------------------------|--|
|       | 1) Mechanical waves                                                                             |  |
|       | 2) Mechanical waves.                                                                            |  |
| Mecha | nical transverse waves                                                                          |  |
| 1)    | Take a and tie one end of the to a post.                                                        |  |
| 2)    | Pull the end of the and make it straight                                                        |  |
| 3)    | Move the end of the rope and and                                                                |  |
| 4)    | A wave will move from the end of the towards the post.                                          |  |
| 5)    | The wave moved from the end of the towards the post.                                            |  |
| 6)    | The of the moved and                                                                            |  |
| 7)    | Therefore the move to the direction of the of the wave.                                         |  |
| 8)    | Put a onto a water.                                                                             |  |
| 9)    | Waves in forms of ripples will move away from the place where the was landed on the water.      |  |
| 10)   | But the water move and                                                                          |  |
| 11)   | Therefore the water moved to the direction of the of the water                                  |  |
| 12)   | Type of waves having vibrating to the direction of the of the wave are called mechanical waves. |  |









# The first type of wave is called a transverse wave The direction of the motion of a particle is perpendicular to the motion of the wave Particle Motion Parts of a Wave Amplitude Crest Trough Wavelength Wavelength Equilibrium Position



Teacher, S. Thomas' College, Mt. Lavinia



# **Transverse Waves**

# Direction of wave \_\_\_\_\_

# Displacement



- 1) The ...... most positions of a ..... wave are called .........
- 2) The ...... most positions of a ...... wave are called ......
- 3) The ...... between a ...... or a ...... and the ..... point of a ...... wave is called the ....... (.....).

# Channa Asela www.OLscience.com

# Teacher, S. Thomas' College, Mt. Lavinia

| 4) The is measured in ().                                                   |  |  |  |
|-----------------------------------------------------------------------------|--|--|--|
| 5) The between two or two is called the ().                                 |  |  |  |
| 6) (                                                                        |  |  |  |
| 7) Number of or the number of occur at a particular in one is called the () |  |  |  |
| 8)is measured in ().                                                        |  |  |  |
| 9) The taken to complete one or an is called the ().                        |  |  |  |
| 10) The taken by a wave to a equal to its is called the ().                 |  |  |  |
| 11)is measured in().                                                        |  |  |  |
| 12)                                                                         |  |  |  |
| 13) The travelled by a wave in one is called the ().                        |  |  |  |
| 14) is measured by ()                                                       |  |  |  |
| 15)=                                                                        |  |  |  |
| V= measured in ()                                                           |  |  |  |
| f = measured in ()                                                          |  |  |  |
| $\lambda = \dots$ measured in ()                                            |  |  |  |
| Question                                                                    |  |  |  |

In a water wave 720 crest occurred in 5 minutes. The distance between two adjacent crests was 25cm.

- Find it frequency (i)
- Find its wave length (ii)
- Find the velocity of the wave (iii)
- Find the distance travelled by that wave in 10 minutes (iv)

0714 820 596

# Channa Asela

www.OLscience.com

Teacher, S. Thomas' College, Mt. Lavinia

 (i)
 Number of crests occur in ...... minutes
 = .......

 Number of crests occur in ...... minute
 = .......

 Number of crests occur in ...... seconds
 = .......

 Number ...... occur in ..... second
 = .......

Therefore the frequency of the wave